Понятия со словосочетанием «ряд чисел»
Связанные понятия
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
Репди́джиты (англ. repdigit, от repeated digit — повторённая цифра), также репдигиты, однообра́зные чи́сла — натуральные числа, все цифры записи которых одинаковые. Обычно подразумевается запись в десятичной системе счисления.
Метод площадей — метод решения геометрических тождеств путём подсчёта площадей фигур разными способами.
Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.
При́знак Паска́ля — математический метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
Числовой луч — графическое представление неотрицательных чисел в виде луча. На луче, как правило, отмечены натуральные числа. Расстояние между соседними точками равно единице измерения (единичный отрезок), которая задаётся произвольно. Началу луча ставится в соответствие число 0. Луч, как правило ориентирован вправо. Числовой луч является частью числовой оси.
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Формула Вика — формула теории вероятностей, выражающая математическое ожидание многочлена от координат гауссовского вектора через элементы матрицы ковариаций. Одним из её применений является связь между средним значением полинома от следов степеней случайной матрицы большого размера и родами поверхностей, получаемыми склейкой заданных многоугольников при различных отождествлениях сторон.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
Кру́глыми чи́слами относительно некоторой позиционной системы счисления называют степени её основания. В этой системе счисления такие числа записываются как единица с последующими нулями. Количество нулей справа от единицы равно показателю степени основания.
Подробнее: Круглые числа
Фигу́рные чи́сла — общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Предположительно, с понятием фигурного числа связано выражение «возвести число в квадрат или в куб». В теории чисел и комбинаторике фигурные числа связаны с многими другими классами целых чисел — биномиальными коэффициентами, совершенными числами, числами Мерсенна, Ферма, Фибоначчи, Люка и другими.
В математике,
несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника (возможно, не самих сторон, а их продолжений) Пусть даны три различные точки A,B,C, не лежащие на одной прямой, и пусть ΔABC — треугольник, имеющий эти точки в качестве вершин. Обычно считается, что буква, например A, обозначает...
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
Однородные координаты ―
система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
При́знак дели́мости — алгоритм, позволяющий сравнительно быстро определить, является ли число кратным заранее заданному. Если признак делимости позволяет выяснить не только делимость числа на заранее заданное, но и остаток от деления, то его называют признаком равноостаточности.
В данной статье рассматриваются две параллельные прямые на плоскости Для параллельных прямых , расположенных не в одной плоскости, смотрите Скрещивающиеся прямые#расстояние.Расстояние между двумя прямыми линиями на плоскости - это наименьшее расстояние между любыми двумя точками, лежащими на линии. Или между точкой лежащей на прямой с другой параллельной прямой. В случае пересекающихся линий, расстояние между ними равно нулю, потому что минимальное расстояние между ними равно нулю (в точке пересечения...
Подробнее: Расстояние между прямыми
Отображе́ние пе́каря — нелинейное отображение единичного квадрата на себя, которое демонстрирует хаотическое поведение.
Ниже приведён
список интегралов (первообразных функций) от экспоненциальной функции. В списке везде опущена константа интегрирования.
В геометрии
японская теорема утверждает, что центры окружностей, вписанных в определённые треугольники внутри вписанного в окружность четырёхугольника, являются вершинами прямоугольника.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
Египетская система счисления — непозиционная система счисления, которая употреблялась в Древнем Египте вплоть до начала X века н. э. В этой системе цифрами являлись иероглифические символы; они обозначали числа 1, 10, 100 и т. д. до миллиона.
Триморфное число — натуральное число, десятичная запись куба которого оканчивается цифрами самого этого числа.
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Описанный многоугольник, известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Теорема котангенсов — тригонометрическая теорема, связывающая радиус вписанной окружности треугольника с длиной его сторон. Теорему котангенсов удобно использовать при решении треугольника по трём сторонам.
Число закрученности инвариантно относительно движений Рейдемейстера II и III типов. Напротив, движение Рейдемейстера I типа увеличивает или уменьшает число закрученности на 1, поэтому оно не является инвариантом изотопии узла — а только функцией от диаграммы.
Серединный многоугольник (многоугольник Казнера) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
Метод хорд — итерационный численный метод приближённого нахождения корня уравнения.
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Подробнее: Конструктивные способы определения вещественного числа
Существует единственное аффинное преобразование, которое переводит правильный треугольник в данный треугольник.
Подробнее: Эллипс Штейнера